Papers
Topics
Authors
Recent
2000 character limit reached

3D $H^2$-nonconforming tetrahedral finite elements for the biharmonic equation

Published 18 Sep 2019 in math.NA and cs.NA | (1909.08178v1)

Abstract: In this article, a family of $H2$-nonconforming finite elements on tetrahedral grids is constructed for solving the biharmonic equation in 3D. In the family, the $P_\ell$ polynomial space is enriched by some high order polynomials for all $\ell\ge 3$ and the corresponding finite element solution converges at the optimal order $\ell-1$ in $H2$ norm. Moreover, the result is improved for two low order cases by using $P_6$ and $P_7$ polynomials to enrich $P_4$ and $P_5$ polynomial spaces, respectively. The optimal order error estimate is proved. The numerical results are provided to confirm the theoretical findings.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.