Papers
Topics
Authors
Recent
Search
2000 character limit reached

RuDaS: Synthetic Datasets for Rule Learning and Evaluation Tools

Published 16 Sep 2019 in cs.AI and cs.LO | (1909.07095v2)

Abstract: Logical rules are a popular knowledge representation language in many domains, representing background knowledge and encoding information that can be derived from given facts in a compact form. However, rule formulation is a complex process that requires deep domain expertise,and is further challenged by today's often large, heterogeneous, and incomplete knowledge graphs. Several approaches for learning rules automatically, given a set of input example facts,have been proposed over time, including, more recently, neural systems. Yet, the area is missing adequate datasets and evaluation approaches: existing datasets often resemble toy examples that neither cover the various kinds of dependencies between rules nor allow for testing scalability. We present a tool for generating different kinds of datasets and for evaluating rule learning systems, including new performance measures.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.