Papers
Topics
Authors
Recent
2000 character limit reached

ISL: A novel approach for deep exploration

Published 13 Sep 2019 in cs.LG, cs.AI, and stat.ML | (1909.06293v4)

Abstract: In this article we explore an alternative approach to address deep exploration and we introduce the ISL algorithm, which is efficient at performing deep exploration. Similarly to maximum entropy RL, we derive the algorithm by augmenting the traditional RL objective with a novel regularization term. A distinctive feature of our approach is that, as opposed to other works that tackle the problem of deep exploration, in our derivation both the learning equations and the exploration-exploitation strategy are derived in tandem as the solution to a well-posed optimization problem whose minimization leads to the optimal value function. Empirically we show that our method exhibits state of the art performance on a range of challenging deep-exploration benchmarks.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.