Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HapPenIng: Happen, Predict, Infer -- Event Series Completion in a Knowledge Graph (1909.06219v1)

Published 12 Sep 2019 in cs.SI and cs.AI

Abstract: Event series, such as the Wimbledon Championships and the US presidential elections, represent important happenings in key societal areas including sports, culture and politics. However, semantic reference sources, such as Wikidata, DBpedia and EventKG knowledge graphs, provide only an incomplete event series representation. In this paper we target the problem of event series completion in a knowledge graph. We address two tasks: 1) prediction of sub-event relations, and 2) inference of real-world events that happened as a part of event series and are missing in the knowledge graph. To address these problems, our proposed supervised HapPenIng approach leverages structural features of event series. HapPenIng does not require any external knowledge - the characteristics making it unique in the context of event inference. Our experimental evaluation demonstrates that HapPenIng outperforms the baselines by 44 and 52 percentage points in terms of precision for the sub-event prediction and the inference tasks, correspondingly.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Simon Gottschalk (28 papers)
  2. Elena Demidova (38 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.