Papers
Topics
Authors
Recent
Search
2000 character limit reached

Gaussians on Riemannian Manifolds: Applications for Robot Learning and Adaptive Control

Published 12 Sep 2019 in cs.RO and cs.LG | (1909.05946v4)

Abstract: This article presents an overview of robot learning and adaptive control applications that can benefit from a joint use of Riemannian geometry and probabilistic representations. The roles of Riemannian manifolds, geodesics and parallel transport in robotics are first discussed. Several forms of manifolds already employed in robotics are then presented, by also listing manifolds that have been underexploited but that have potentials in future robot learning applications. A varied range of techniques employing Gaussian distributions on Riemannian manifolds is then introduced, including clustering, regression, information fusion, planning and control problems. Two examples of applications are presented, involving the control of a prosthetic hand from surface electromyography (sEMG) data, and the teleoperation of a bimanual underwater robot. Further perspectives are finally discussed, with suggestions of promising research directions.

Citations (64)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.