Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Discretely shrinking targets in moduli space (1909.05817v2)

Published 12 Sep 2019 in math.DS

Abstract: We consider the discrete shrinking target problem for Teichm\"uller geodesic flow on the moduli space of abelian or quadratic differentials and prove that the discrete geodesic trajectory of almost every differential will hit a shrinking family of targets infinitely often provided the measures of the targets are not summable. This result applies to any ergodic $\mathrm{SL}(2,\mathbb{R})$--invariant measure and any nested family of spherical targets. Under stronger conditions on the targets, we moreover prove that almost every differential will eventually always hit the targets. As an application, we obtain a logarithm law describing the rate at which generic discrete trajectories accumulate on a given point in moduli space. These results build on work of Kelmer and generalize theorems of Aimino, Nicol, and Todd.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.