Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Validating Weak-form Market Efficiency in United States Stock Markets with Trend Deterministic Price Data and Machine Learning (1909.05151v1)

Published 11 Sep 2019 in q-fin.ST, cs.CE, cs.LG, and econ.EM

Abstract: The Efficient Market Hypothesis has been a staple of economics research for decades. In particular, weak-form market efficiency -- the notion that past prices cannot predict future performance -- is strongly supported by econometric evidence. In contrast, machine learning algorithms implemented to predict stock price have been touted, to varying degrees, as successful. Moreover, some data scientists boast the ability to garner above-market returns using price data alone. This study endeavors to connect existing econometric research on weak-form efficient markets with data science innovations in algorithmic trading. First, a traditional exploration of stationarity in stock index prices over the past decade is conducted with Augmented Dickey-Fuller and Variance Ratio tests. Then, an algorithmic trading platform is implemented with the use of five machine learning algorithms. Econometric findings identify potential stationarity, hinting technical evaluation may be possible, though algorithmic trading results find little predictive power in any machine learning model, even when using trend-specific metrics. Accounting for transaction costs and risk, no system achieved above-market returns consistently. Our findings reinforce the validity of weak-form market efficiency.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Samuel Showalter (2 papers)
  2. Jeffrey Gropp (1 paper)
Citations (1)

Summary

We haven't generated a summary for this paper yet.