Papers
Topics
Authors
Recent
Search
2000 character limit reached

Epiconvergence, the Moreau envelope and generalized linear-quadratic functions

Published 11 Sep 2019 in math.FA | (1909.04848v1)

Abstract: This work introduces the class of generalized linear-quadratic functions, constructed using maximally monotone symmetric linear relations. Calculus rules and properties of the Moreau envelope for this class of functions are developed. In finite dimensions, on a metric space defined by Moreau envelopes, we consider the epigraphical limit of a sequence of quadratic functions and categorize the results. We explore the question of when a quadratic function is a Moreau envelope of a generalized linear-quadratic function; characterizations involving nonexpansiveness and Lipschitz continuity are established. This work generalizes some results by Hiriart-Urruty and by Rockafellar and Wets.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.