Papers
Topics
Authors
Recent
2000 character limit reached

LCSCNet: Linear Compressing Based Skip-Connecting Network for Image Super-Resolution

Published 9 Sep 2019 in eess.IV and cs.CV | (1909.03573v1)

Abstract: In this paper, we develop a concise but efficient network architecture called linear compressing based skip-connecting network (LCSCNet) for image super-resolution. Compared with two representative network architectures with skip connections, ResNet and DenseNet, a linear compressing layer is designed in LCSCNet for skip connection, which connects former feature maps and distinguishes them from newly-explored feature maps. In this way, the proposed LCSCNet enjoys the merits of the distinguish feature treatment of DenseNet and the parameter-economic form of ResNet. Moreover, to better exploit hierarchical information from both low and high levels of various receptive fields in deep models, inspired by gate units in LSTM, we also propose an adaptive element-wise fusion strategy with multi-supervised training. Experimental results in comparison with state-of-the-art algorithms validate the effectiveness of LCSCNet.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.