Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Restricted Minimum Error Entropy Criterion for Robust Classification (1909.02707v4)

Published 6 Sep 2019 in cs.LG and stat.ML

Abstract: The minimum error entropy (MEE) criterion has been verified as a powerful approach for non-Gaussian signal processing and robust machine learning. However, the implementation of MEE on robust classification is rather a vacancy in the literature. The original MEE only focuses on minimizing the Renyi's quadratic entropy of the error probability distribution function (PDF), which could cause failure in noisy classification tasks. To this end, we analyze the optimal error distribution in the presence of outliers for those classifiers with continuous errors, and introduce a simple codebook to restrict MEE so that it drives the error PDF towards the desired case. Half-quadratic based optimization and convergence analysis of the new learning criterion, called restricted MEE (RMEE), are provided. Experimental results with logistic regression and extreme learning machine are presented to verify the desirable robustness of RMEE.

Citations (13)

Summary

We haven't generated a summary for this paper yet.