Papers
Topics
Authors
Recent
2000 character limit reached

Coherent Optical Communications Enhanced by Machine Intelligence (1909.02525v2)

Published 5 Sep 2019 in quant-ph and cs.LG

Abstract: Uncertainty in discriminating between different received coherent signals is integral to the operation of many free-space optical communications protocols, and is often difficult when the receiver measures a weak signal. Here we design an optical communications scheme that uses balanced homodyne detection in combination with an unsupervised generative machine learning and convolutional neural network (CNN) system, and demonstrate its efficacy in a realistic simulated coherent quadrature phase shift keyed (QPSK) communications system. Additionally, we program the neural network system at the transmitter such that it autonomously learns to correct for the noise associated with a weak QPSK signal, which is shared with the network state of the receiver prior to the implementation of the communications. We find that the scheme significantly reduces the overall error probability of the communications system, achieving the classical optimal limit. This communications design is straightforward to build, implement, and scale. We anticipate that these results will allow for a significant enhancement of current classical and quantum coherent optical communications technologies.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.