Papers
Topics
Authors
Recent
Search
2000 character limit reached

Generalized Integrated Gradients: A practical method for explaining diverse ensembles

Published 4 Sep 2019 in cs.LG and stat.ML | (1909.01869v2)

Abstract: We introduce Generalized Integrated Gradients (GIG), a formal extension of the Integrated Gradients (IG) (Sundararajan et al., 2017) method for attributing credit to the input variables of a predictive model. GIG improves IG by explaining a broader variety of functions that arise from practical applications of ML in domains like financial services. GIG is constructed to overcome limitations of Shapley (1953) and Aumann-Shapley (1974), and has desirable properties when compared to other approaches. We prove GIG is the only correct method, under a small set of reasonable axioms, for providing explanations for mixed-type models or games. We describe the implementation, and present results of experiments on several datasets and systems of models.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.