Papers
Topics
Authors
Recent
Search
2000 character limit reached

Heterogeneous Collaborative Filtering

Published 31 Aug 2019 in cs.IR | (1909.01727v1)

Abstract: Recommendation system is important to a content sharing/creating social network. Collaborative filtering is a widely-adopted technology in conventional recommenders, which is based on similarity between positively engaged content items involving the same users. Conventional collaborative filtering (CCF) suffers from cold start problem and narrow content diversity. We propose a new recommendation approach, heterogeneous collaborative filtering (HCF) to tackle these challenges at the root, while keeping the strength of collaborative filtering. We present two implementation algorithms of HCF for content recommendation and content dissemination. Experiment results demonstrate that our approach improve the recommendation quality in a real world social network for content creating and sharing.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.