Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Target Language-Aware Constrained Inference for Cross-lingual Dependency Parsing (1909.01482v1)

Published 3 Sep 2019 in cs.CL

Abstract: Prior work on cross-lingual dependency parsing often focuses on capturing the commonalities between source and target languages and overlooks the potential of leveraging linguistic properties of the languages to facilitate the transfer. In this paper, we show that weak supervisions of linguistic knowledge for the target languages can improve a cross-lingual graph-based dependency parser substantially. Specifically, we explore several types of corpus linguistic statistics and compile them into corpus-wise constraints to guide the inference process during the test time. We adapt two techniques, Lagrangian relaxation and posterior regularization, to conduct inference with corpus-statistics constraints. Experiments show that the Lagrangian relaxation and posterior regularization inference improve the performances on 15 and 17 out of 19 target languages, respectively. The improvements are especially significant for target languages that have different word order features from the source language.

Citations (21)

Summary

We haven't generated a summary for this paper yet.