Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Prospect Theory Based Crowdsourcing for Classification in the Presence of Spammers (1909.01463v2)

Published 3 Sep 2019 in cs.HC, cs.LG, and stat.ML

Abstract: We consider the $M$-ary classification problem via crowdsourcing, where crowd workers respond to simple binary questions and the answers are aggregated via decision fusion. The workers have a reject option to skip answering a question when they do not have the expertise, or when the confidence of answering that question correctly is low. We further consider that there are spammers in the crowd who respond to the questions with random guesses. Under the payment mechanism that encourages the reject option, we study the behavior of honest workers and spammers, whose objectives are to maximize their monetary rewards. To accurately characterize human behavioral aspects, we employ prospect theory to model the rationality of the crowd workers, whose perception of costs and probabilities are distorted based on some value and weight functions, respectively. Moreover, we estimate the number of spammers and employ a weighted majority voting decision rule, where we assign an optimal weight for every worker to maximize the system performance. The probability of correct classification and asymptotic system performance are derived. We also provide simulation results to demonstrate the effectiveness of our approach.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Baocheng Geng (19 papers)
  2. Qunwei Li (23 papers)
  3. Pramod K. Varshney (135 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.