Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Training Optimization for Gate-Model Quantum Neural Networks (1909.01048v1)

Published 3 Sep 2019 in quant-ph, cs.IT, and math.IT

Abstract: Gate-based quantum computations represent an essential to realize near-term quantum computer architectures. A gate-model quantum neural network (QNN) is a QNN implemented on a gate-model quantum computer, realized via a set of unitaries with associated gate parameters. Here, we define a training optimization procedure for gate-model QNNs. By deriving the environmental attributes of the gate-model quantum network, we prove the constraint-based learning models. We show that the optimal learning procedures are different if side information is available in different directions, and if side information is accessible about the previous running sequences of the gate-model QNN. The results are particularly convenient for gate-model quantum computer implementations.

Citations (44)

Summary

We haven't generated a summary for this paper yet.