Papers
Topics
Authors
Recent
Search
2000 character limit reached

Algorithms and System Architecture for Immediate Personalized News Recommendations

Published 3 Sep 2019 in cs.IR | (1909.01005v1)

Abstract: Personalization plays an important role in many services, just as news does. Many studies have examined news personalization algorithms, but few have considered practical environments. This paper provides algorithms and system architecture for generating immediate personalized news in a practical environment. Immediacy means changes in news trends and user interests are reflected in recommended news lists quickly. Since news trends and user interests rapidly change, immediacy is critical in news personalization applications. We develop algorithms and system architecture to realize immediacy. Our algorithms are based on collaborative filtering of user clusters and evaluate news articles using click-through rate and decay scores based on the time elapsed since the user's last access. Existing studies have not fully discussed system architecture, so a major contribution of this paper is that we demonstrate a system architecture and realize our algorithms and a configuration example implemented on top of Amazon Web Services. We evaluate the proposed method both offline and online. The offline experiments are conducted through a real-world dataset from a commercial news delivery service, and online experiments are conducted via A/B testing on production environments. We confirm the effectiveness of our proposed method and also that our system architecture can operate in large-scale production environments.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.