Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Singular tuples of matrices is not a null cone (and, the symmetries of algebraic varieties) (1909.00857v1)

Published 2 Sep 2019 in math.RT, cs.CC, math.AC, and math.AG

Abstract: The following multi-determinantal algebraic variety plays a central role in algebra, algebraic geometry and computational complexity theory: ${\rm SING}{n,m}$, consisting of all $m$-tuples of $n\times n$ complex matrices which span only singular matrices. In particular, an efficient deterministic algorithm testing membership in ${\rm SING}{n,m}$ will imply super-polynomial circuit lower bounds, a holy grail of the theory of computation. A sequence of recent works suggests such efficient algorithms for memberships in a general class of algebraic varieties, namely the null cones of linear group actions. Can this be used for the problem above? Our main result is negative: ${\rm SING}{n,m}$ is not the null cone of any (reductive) group action! This stands in stark contrast to a non-commutative analog of this variety, and points to an inherent structural difficulty of ${\rm SING}{n,m}$. To prove this result we identify precisely the group of symmetries of ${\rm SING}_{n,m}$. We find this characterization, and the tools we introduce to prove it, of independent interest. Our work significantly generalizes a result of Frobenius for the special case $m=1$, and suggests a general method for determining the symmetries of algebraic varieties.

Citations (14)

Summary

We haven't generated a summary for this paper yet.