Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strong Algebras and Radical Sylvester-Gallai Configurations (2310.03993v1)

Published 6 Oct 2023 in math.AC, cs.CC, math.AG, and math.CO

Abstract: In this paper, we prove the following non-linear generalization of the classical Sylvester-Gallai theorem. Let $\mathbb{K}$ be an algebraically closed field of characteristic $0$, and $\mathcal{F}={F_1,\cdots,F_m} \subset \mathbb{K}[x_1,\cdots,x_N]$ be a set of irreducible homogeneous polynomials of degree at most $d$ such that $F_i$ is not a scalar multiple of $F_j$ for $i\neq j$. Suppose that for any two distinct $F_i,F_j\in \mathcal{F}$, there is $k\neq i,j$ such that $F_k\in \mathrm{rad}(F_i,F_j)$. We prove that such radical SG configurations must be low dimensional. More precisely, we show that there exists a function $\lambda : \mathbb{N} \to \mathbb{N}$, independent of $\mathbb{K},N$ and $m$, such that any such configuration $\mathcal{F}$ must satisfy $$ \dim (\mathrm{span}_{\mathbb{K}}{\mathcal{F}}) \leq \lambda(d). $$ Our result confirms a conjecture of Gupta [Gup14, Conjecture 2] and generalizes the quadratic and cubic Sylvester-Gallai theorems of [S20,OS22]. Our result takes us one step closer towards the first deterministic polynomial time algorithm for the Polynomial Identity Testing (PIT) problem for depth-4 circuits of bounded top and bottom fanins. Our result, when combined with the StiLLMan uniformity type results of [AH20a,DLL19,ESS21], yields uniform bounds for several algebraic invariants such as projective dimension, Betti numbers and Castelnuovo-Mumford regularity of ideals generated by radical SG configurations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (64)
  1. Ideals, determinants, and straightening: Proving and using lower bounds for polynomial ideals. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pages 389–402, 2022.
  2. Manindra Agrawal. Proving lower bounds via pseudo-random generators. In FSTTCS 2005: Foundations of Software Technology and Theoretical Computer Science: 25th International Conference, Hyderabad, India, December 15-18, 2005. Proceedings 25, pages 92–105. Springer, 2005.
  3. Small subalgebras of polynomial rings and stillman’s conjecture. Journal of the American Mathematical Society, 33(1):291–309, 2020.
  4. Strength conditions, small subalgebras, and stillman bounds in degree ≤4absent4\leq 4≤ 4. Transactions of the American Mathematical Society, 373(7), 2020.
  5. Introduction to Commutative Algebra. Addison Wesley Publishing Company, 1969.
  6. Manindra Agrawal and V Vinay. Arithmetic circuits: A chasm at depth four. In 2008 49th Annual IEEE Symposium on Foundations of Computer Science, pages 67–75. IEEE, 2008.
  7. On the number of ordinary lines determined by sets in complex space. Discrete Computational Geometry, 61(4):778-808, 2019.
  8. Rank bounds for design matrices with applications to combinatorial geometry and locally correctable codes. In Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing, STOC 11, pages 519–528, 2011.
  9. A survey of sylvester’s problem and its generalizations. Aequationes Mathematicae, 40(1):111–135, 1990.
  10. Algebraic independence and blackbox identity testing. Information and Computation, 222:2–19, 2013.
  11. Hardness vs randomness for bounded depth arithmetic circuits. In 33rd Computational Complexity Conference (CCC 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.
  12. Closure results for polynomial factorization. Theory of Computing, 15(1):1–34, 2019.
  13. Deterministic identity testing paradigms for bounded top-fanin depth-4 circuits. In Proceedings of the 36th Computational Complexity Conference, CCC ’21, Dagstuhl, DEU, 2021. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
  14. Rank bounds for design matrices with block entries and geometric applications. Discrete Analysis, 2018.
  15. Stillman’s conjecture via generic initial ideals. Communications in algebra, 47(6):2384–2395, 2019.
  16. Locally decodable codes with two queries and polynomial identity testing for depth 3 circuits. SIAM Journal on Computing, 36(5):1404–1434, 2007.
  17. Improved rank bounds for design matrices and a new proof of kelly’s theorem. In Forum of Mathematics, Sigma, volume 2. Cambridge University Press, 2014.
  18. David Eisenbud. Commutative Algebra with a View Toward Algebraic Theory. Springer-Verlag, New York, 1995.
  19. Bisecants of finite collections of sets in linear spaces. Canadian Journal of Mathematics, 18:375–380, 1966.
  20. Sylvester–gallai theorems for complex numbers and quaternions. Discrete Comput Geom, 35:361–373, 2006.
  21. Cubics in 10 variables vs. cubics in 1000 variables: uniformity phenomena for bounded degree polynomials. Bull. Amer. Math. Soc. (N.S.), 2019.
  22. Big polynomial rings and stillman’s conjecture. Inventiones mathematicae, 218(2):413–439, 2019.
  23. Generalizations of stillman’s conjecture via twisted commutative algebra. International Mathematics Research Notices, 2021(16):12281–12304, 2021.
  24. A deterministic parallel algorithm for bipartite perfect matching. Communications of the ACM, 62(3):109–115, 2019.
  25. Explicit noether normalization for simultaneous conjugation via polynomial identity testing. In International Workshop on Approximation Algorithms for Combinatorial Optimization, pages 527–542. Springer, 2013.
  26. Succinct hitting sets and barriers to proving lower bounds for algebraic circuits. Theory of Computing, 14(1):1–45, 2018.
  27. W. Fulton. Intersection Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge Band 2. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984.
  28. W. Fulton. Algebraic curves. Math. Lecture Ser. (Benjamin Cummings, 1969); reprinted (Addison-Wesley, 1989.
  29. Tibor Gallai. Solution of problem 4065. American Mathematical Monthly, 51:169–171, 1944.
  30. Arithmetic circuits: A chasm at depth 3. SIAM Journal on Computing, 45(3):1064–1079, 2016.
  31. Robust Radical Sylvester-Gallai Theorem for Quadratics. In 38th International Symposium on Computational Geometry (SoCG 2022), volume 224 of Leibniz International Proceedings in Informatics (LIPIcs), pages 42:1–42:13, 2022.
  32. A. Grothendieck. Éléments de géométrie algébrique : I. Le langage des schémas., volume 4. Publications Mathématiques de l’IHÉS, 1960.
  33. B. Green and T. Tao. On sets defining few ordinary lines. Discrete Comput Geom, 50:409–468, 2013.
  34. Linear matroid intersection is in quasi-nc. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 821–830, 2017.
  35. Ankit Gupta. Algebraic geometric techniques for depth-4 pit & sylvester-gallai conjectures for varieties. In Electron. Colloquium Comput. Complex., volume 21, page 130, 2014.
  36. Sten Hansen. A generalization of a theorem of sylvester on the lines determined by a finite point set. Mathematica Scandinavica, 16(2):175–180, 1966.
  37. Robin Hartshorne. Algebraic Geometry. Springer-Verlag, 1977.
  38. F-regularity, test elements, and smooth base change. Trans. Amer. Math. Soc., 346:no. 1, 1–62, (1994).
  39. Friedrich Hirzebruch. Arrangements of lines and algebraic surfaces. In Arithmetic and geometry, pages 113–140. Springer, 1983.
  40. Testing polynomials which are easy to compute. In Proceedings of the twelfth annual ACM Symposium on Theory of Computing, pages 262–272, 1980.
  41. Leroy Milton Kelly. A resolution of the sylvester-gallai problem of j.-p. serre. Discrete & Computational Geometry, 1(2):101–104, 1986.
  42. Derandomizing polynomial identity tests means proving circuit lower bounds. In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, pages 355–364, 2003.
  43. L. M. Kelly and S. Nwankpa. Affine embeddings of sylverter-gallai designs. Journal of Combinatorial Theory, Series A, 14, Issue 3:422–438, 1973.
  44. Blackbox polynomial identity testing for depth 3 circuits. In 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pages 198–207. IEEE, 2009.
  45. Equivalence of polynomial identity testing and polynomial factorization. computational complexity, 24:295–331, 2015.
  46. Superpolynomial lower bounds against low-depth algebraic circuits. In FOCS 2021, 2022.
  47. Eberhard Melchior. Uber vielseite der projektiven ebene. Deutsche Math, 5:461–475, 1940.
  48. Ketan Mulmuley. Geometric complexity theory v: Efficient algorithms for noether normalization. Journal of the American Mathematical Society, 30(1):225–309, 2017.
  49. Radical sylvester-gallai theorem for cubics. FOCS, 2022.
  50. The sylvester-gallai theorem, colourings and algebra. Discret. Math., 2009.
  51. A generalized sylvester–gallai-type theorem for quadratic polynomials. In Forum of Mathematics, Sigma, volume 10, page e112. Cambridge University Press, 2022.
  52. Nitin Saxena. Progress on polynomial identity testing. Bull. EATCS, 99:49–79, 2009.
  53. Nitin Saxena. Progress on polynomial identity testing-ii. Perspectives in Computational Complexity: The Somenath Biswas Anniversary Volume, pages 131–146, 2014.
  54. Jacob T Schwartz. Fast probabilistic algorithms for verification of polynomial identities. Journal of the ACM (JACM), 27(4):701–717, 1980.
  55. Jean-Pierre Serre. Advanced problem 5359. Amer. Math. Monthly, 73(1):89, 1966.
  56. Amir Shpilka. Sylvester-gallai type theorems for quadratic polynomials. Discrete Analysis, page 14492, 2020.
  57. Gaurav Sinha. Reconstruction of real depth-3 circuits with top fan-in 2. In 31st Conference on Computational Complexity (CCC 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.
  58. From sylvester-gallai configurations to rank bounds: Improved blackbox identity test for depth-3 circuits. Journal of the ACM (JACM), 60(5):1–33, 2013.
  59. The Stacks Project Authors. Stacks Project. Stacks Project, 2015.
  60. Arithmetic circuits: A survey of recent results and open questions. Foundations and Trends® in Theoretical Computer Science, 5(3–4):207–388, 2010.
  61. James Joseph Sylvester. Mathematical question 11851. Educational Times, 59(98):256, 1893.
  62. Notes on the “slice rank” of tensors. Tao’s blog post, 2016.
  63. Ravi Vakil. THE RISING SEA: Foundations of Algebraic Geometry. math216.wordpress.com, 2017.
  64. Richard Zippel. Probabilistic algorithms for sparse polynomials. In International symposium on symbolic and algebraic manipulation, pages 216–226. Springer, 1979.
Citations (1)

Summary

We haven't generated a summary for this paper yet.