Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 128 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Rectifiability of the reduced boundary for sets of finite perimeter over RCD$(K,N)$ spaces (1909.00381v1)

Published 1 Sep 2019 in math.MG, math.DG, and math.FA

Abstract: This note is devoted to the study of sets of finite perimeter over RCD$(K,N)$ metric measure spaces. Its aim is to complete the picture about the generalization of De Giorgi's theorem within this framework. Starting from the results of [2] we obtain uniqueness of tangents and rectifiability for the reduced boundary of sets of finite perimeter. As an intermediate tool, of independent interest, we develop a Gauss-Green integration by parts formula tailored to this setting. These results are new and non-trivial even in the setting of Ricci limits.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.