Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
GPT OSS 120B 391 tok/s Pro
Kimi K2 159 tok/s Pro
2000 character limit reached

Convergence of Gaussian Process Regression with Estimated Hyper-parameters and Applications in Bayesian Inverse Problems (1909.00232v3)

Published 31 Aug 2019 in math.NA, cs.NA, math.ST, and stat.TH

Abstract: This work is concerned with the convergence of Gaussian process regression. A particular focus is on hierarchical Gaussian process regression, where hyper-parameters appearing in the mean and covariance structure of the Gaussian process emulator are a-priori unknown, and are learnt from the data, along with the posterior mean and covariance. We work in the framework of empirical Bayes, where a point estimate of the hyper-parameters is computed, using the data, and then used within the standard Gaussian process prior to posterior update. We provide a convergence analysis that (i) holds for any continuous function $f$ to be emulated; and (ii) shows that convergence of Gaussian process regression is unaffected by the additional learning of hyper-parameters from data, and is guaranteed in a wide range of scenarios. As the primary motivation for the work is the use of Gaussian process regression to approximate the data likelihood in Bayesian inverse problems, we provide a bound on the error introduced in the Bayesian posterior distribution in this context.

Citations (57)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)