Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Frequentist coverage and sup-norm convergence rate in Gaussian process regression (1708.04753v1)

Published 16 Aug 2017 in math.ST, stat.CO, stat.ML, and stat.TH

Abstract: Gaussian process (GP) regression is a powerful interpolation technique due to its flexibility in capturing non-linearity. In this paper, we provide a general framework for understanding the frequentist coverage of point-wise and simultaneous Bayesian credible sets in GP regression. As an intermediate result, we develop a Bernstein von-Mises type result under supremum norm in random design GP regression. Identifying both the mean and covariance function of the posterior distribution of the Gaussian process as regularized $M$-estimators, we show that the sampling distribution of the posterior mean function and the centered posterior distribution can be respectively approximated by two population level GPs. By developing a comparison inequality between two GPs, we provide exact characterization of frequentist coverage probabilities of Bayesian point-wise credible intervals and simultaneous credible bands of the regression function. Our results show that inference based on GP regression tends to be conservative; when the prior is under-smoothed, the resulting credible intervals and bands have minimax-optimal sizes, with their frequentist coverage converging to a non-degenerate value between their nominal level and one. As a byproduct of our theory, we show that the GP regression also yields minimax-optimal posterior contraction rate relative to the supremum norm, which provides a positive evidence to the long standing problem on optimal supremum norm contraction rate in GP regression.

Citations (52)

Summary

We haven't generated a summary for this paper yet.