Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning self-triggered controllers with Gaussian processes (1909.00178v2)

Published 31 Aug 2019 in eess.SY and cs.SY

Abstract: This paper investigates the design of self-triggered controllers for networked control systems (NCSs), where the dynamics of the plant is \textit{unknown} apriori. To deal with the unknown transition dynamics, we employ the Gaussian process (GP) regression in order to learn the dynamics of the plant. To design the self-triggered controller, we formulate an optimal control problem, such that the optimal control and communication policies can be jointly designed based on the GP model of the plant. Moreover, we provide an overall implementation algorithm that jointly learns the dynamics of the plant and the self-triggered controller based on a reinforcement learning framework. Finally, a numerical simulation illustrates the effectiveness of the proposed approach.

Citations (20)

Summary

We haven't generated a summary for this paper yet.