Learning self-triggered controllers with Gaussian processes
Abstract: This paper investigates the design of self-triggered controllers for networked control systems (NCSs), where the dynamics of the plant is \textit{unknown} apriori. To deal with the unknown transition dynamics, we employ the Gaussian process (GP) regression in order to learn the dynamics of the plant. To design the self-triggered controller, we formulate an optimal control problem, such that the optimal control and communication policies can be jointly designed based on the GP model of the plant. Moreover, we provide an overall implementation algorithm that jointly learns the dynamics of the plant and the self-triggered controller based on a reinforcement learning framework. Finally, a numerical simulation illustrates the effectiveness of the proposed approach.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.