Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GeoStyle: Discovering Fashion Trends and Events (1908.11412v1)

Published 29 Aug 2019 in cs.CV

Abstract: Understanding fashion styles and trends is of great potential interest to retailers and consumers alike. The photos people upload to social media are a historical and public data source of how people dress across the world and at different times. While we now have tools to automatically recognize the clothing and style attributes of what people are wearing in these photographs, we lack the ability to analyze spatial and temporal trends in these attributes or make predictions about the future. In this paper, we address this need by providing an automatic framework that analyzes large corpora of street imagery to (a) discover and forecast long-term trends of various fashion attributes as well as automatically discovered styles, and (b) identify spatio-temporally localized events that affect what people wear. We show that our framework makes long term trend forecasts that are >20% more accurate than the prior art, and identifies hundreds of socially meaningful events that impact fashion across the globe.

Citations (60)

Summary

We haven't generated a summary for this paper yet.