Papers
Topics
Authors
Recent
Search
2000 character limit reached

Guiding 3D U-nets with signed distance fields for creating 3D models from images

Published 28 Aug 2019 in eess.IV | (1908.10579v1)

Abstract: Morphological analysis of the left atrial appendage is an important tool to assess risk of ischemic stroke. Most deep learning approaches for 3D segmentation is guided by binary labelmaps, which results in voxelized segmentations unsuitable for morphological analysis. We propose to use signed distance fields to guide a deep network towards morphologically consistent 3D models. The proposed strategy is evaluated on a synthetic dataset of simple geometries, as well as a set of cardiac computed tomography images containing the left atrial appendage. The proposed method produces smooth surfaces with a closer resemblance to the true surface in terms of segmentation overlap and surface distance.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.