Squares in $\mathbb{F}_{p^2}$ and permutations involving primitive roots (1908.07641v2)
Abstract: Let $p=2n+1$ be an odd prime, and let $\zeta_{p2-1}$ be a primitive $(p2-1)$-th root of unity in the algebraic closure $\overline{\mathbb{Q}p}$ of $\mathbb{Q}_p$. We let $g\in\mathbb{Z}_p[\zeta{p2-1}]$ be a primitive root modulo $p\mathbb{Z}p[\zeta{p2-1}]$ with $g\equiv \zeta_{p2-1}\pmod {p\mathbb{Z}p[\zeta{p2-1}]}$. Let $\Delta\equiv3\pmod4$ be an arbitrary quadratic non-residue modulo $p$ in $\mathbb{Z}$. By the Local Existence Theorem we know that $\mathbb{Q}p(\sqrt{\Delta})=\mathbb{Q}_p(\zeta{p2-1})$. For all $x\in\mathbb{Z}[\sqrt{\Delta}]$ and $y\in\mathbb{Z}p[\zeta{p2-1}]$ we use $\bar{x}$ and $\bar{y}$ to denote the elements $x\mod p\mathbb{Z}[\sqrt{\Delta}]$ and $y\mod p\mathbb{Z}p[\zeta{p2-1}]$ respectively. If we set $a_k=k+\sqrt{\Delta}$ for $0\le k\le p-1$, then we can view the sequence $$S := \overline{a_02}, \cdots, \overline{a_02n2}, \cdots,\overline{a_{p-1}2}, \cdots, \overline{a_{p-1}2n2}\cdots, \overline{12}, \cdots,\overline{n2}$$ as a permutation $\sigma$ of the sequence $$S* := \overline{g2}, \overline{g4}, \cdots,\overline{g{p2-1}}.$$ We determine the sign of $\sigma$ completely in this paper.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.