Papers
Topics
Authors
Recent
2000 character limit reached

Automated classification of plasma regions using 3D particle energy distributions

Published 15 Aug 2019 in physics.space-ph, cs.LG, and eess.IV | (1908.05715v4)

Abstract: We investigate the properties of the ion sky maps produced by the Dual Ion Spectrometers (DIS) from the Fast Plasma Investigation (FPI). We have trained a convolutional neural network classifier to predict four regions crossed by the MMS on the dayside magnetosphere: solar wind, ion foreshock, magnetosheath, and magnetopause using solely DIS spectrograms. The accuracy of the classifier is >98%. We use the classifier to detect mixed plasma regions, in particular to find the bow shock regions. A similar approach can be used to identify the magnetopause crossings and reveal regions prone to magnetic reconnection. Data processing through the trained classifier is fast and efficient and thus can be used for classification for the whole MMS database.

Citations (25)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.