Papers
Topics
Authors
Recent
Search
2000 character limit reached

Automated retinal vessel segmentation based on morphological preprocessing and 2D-Gabor wavelets

Published 12 Aug 2019 in eess.IV and cs.CV | (1908.04123v1)

Abstract: Automated segmentation of vascular map in retinal images endeavors a potential benefit in diagnostic procedure of different ocular diseases. In this paper, we suggest a new unsupervised retinal blood vessel segmentation approach using top-hat transformation, contrast-limited adaptive histogram equalization (CLAHE), and 2-D Gabor wavelet filters. Initially, retinal image is preprocessed using top-hat morphological transformation followed by CLAHE to enhance only the blood vessel pixels in the presence of exudates, optic disc, and fovea. Then, multiscale 2-D Gabor wavelet filters are applied on preprocessed image for better representation of thick and thin blood vessels located at different orientations. The efficacy of the presented algorithm is assessed on publicly available DRIVE database with manually labeled images. On DRIVE database, we achieve an average accuracy of 94.32% with a small standard deviation of 0.004. In comparison with major algorithms, our algorithm produces better performance concerning the accuracy, sensitivity, and kappa agreement.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.