Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhanced Seismic Imaging with Predictive Neural Networks for Geophysics (1908.03973v2)

Published 11 Aug 2019 in eess.IV, cs.LG, physics.geo-ph, and stat.ML

Abstract: We propose a predictive neural network architecture that can be utilized to update reference velocity models as inputs to the full waveform inversion. Deep learning models are explored to augment velocity model building workflows during processing the 3D seismic volume in salt-prone environments. Specifically, a neural network architecture, with 3D convolutional, de-convolutional layers, and 3D max-pooling, is designed to take standard amplitude 3D seismic volumes as an input. Enhanced data augmentations through generative adversarial networks and a weighted loss function enable the network to train with few sparsely annotated slices. Batch normalization is also applied for faster convergence. A 3D probability cube for salt bodies and inclusions is generated through ensembles of predictions from multiple models in order to reduce variance. Velocity models inferred from the proposed networks provide opportunities for FWI forward models to converge faster with an initial condition closer to the true model. In addition, in each iteration step, the probability cubes of salt bodies and inclusions inferred from the proposed networks can be used as a regularization term within the FWI forward modelling, which may result in an improved velocity model estimation while the output of seismic migration can be utilized as an input of the 3D neural network for subsequent iterations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Ping Lu (49 papers)
  2. Yanyan Zhang (22 papers)
  3. Jianxiong Chen (4 papers)
  4. Yuan Xiao (14 papers)
  5. George Zhao (1 paper)
Citations (2)