Kawaguchi-Silverman conjecture for certain surjective endomorphisms (1908.01605v2)
Abstract: We prove the Kawaguchi-Silverman conjecture (KSC), about the equality of arithmetic degree and dynamical degree, for every surjective endomorphism of any (possibly singular) projective surface. In high dimensions, we show that KSC holds for every surjective endomorphism of any $\mathbb{Q}$-factorial Kawamata log terminal projective variety admitting an int-amplified endomorphism, provided that KSC holds for any surjective endomorphism with the ramification divisor being totally invariant and irreducible. In particular, we show that KSC holds for every surjective endomorphism of any rationally connected smooth projective threefold admitting an int-amplified endomorphism. The main ingredients are the equivariant minimal model program, the effectiveness of the anti-canonical divisor and a characterization of toric pairs.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.