Papers
Topics
Authors
Recent
2000 character limit reached

Fast convergence of empirical barycenters in Alexandrov spaces and the Wasserstein space (1908.00828v4)

Published 2 Aug 2019 in math.ST, math.MG, and stat.TH

Abstract: This work establishes fast rates of convergence for empirical barycenters over a large class of geodesic spaces with curvature bounds in the sense of Alexandrov. More specifically, we show that parametric rates of convergence are achievable under natural conditions that characterize the bi-extendibility of geodesics emanating from a barycenter. These results largely advance the state-of-the-art on the subject both in terms of rates of convergence and the variety of spaces covered. In particular, our results apply to infinite-dimensional spaces such as the 2-Wasserstein space, where bi-extendibility of geodesics translates into regularity of Kantorovich potentials.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.