Papers
Topics
Authors
Recent
2000 character limit reached

Structure retrieval from 4D-STEM: statistical analysis of potential pitfalls in high-dimensional data

Published 1 Aug 2019 in stat.AP, eess.IV, and physics.data-an | (1908.00659v2)

Abstract: Four-dimensional scanning transmission electron microscopy (4D-STEM) is one of the most rapidly growing modes of electron microscopy imaging. The advent of fast pixelated cameras and the associated data infrastructure have greatly accelerated this process. Yet conversion of the 4D datasets into physically meaningful structure images in real-space remains an open issue. In this work, we demonstrate that, it is possible to systematically create filters that will affect the apparent resolution or even qualitative features of the real-space structure image, reconstructing artificially generated patterns. As initial efforts, we explore statistical model selection algorithms, aiming for robustness and reliability of estimated filters. This statistical model selection analysis demonstrates the need for regularization and cross-validation of inversion methods to robustly recover structure from high-dimensional diffraction datasets.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.