Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 128 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the Boundaries of the m=2 Amplituhedron (1908.00386v1)

Published 1 Aug 2019 in hep-th and math.CO

Abstract: Amplituhedra $\mathcal{A}{n,k}{(m)}$ are geometric objects of great interest in modern mathematics and physics: for mathematicians they are combinatorially rich generalizations of polygons and polytopes, based on the notion of positivity; for physicists, the amplituhedron $\mathcal{A}{(4)}{n,k}$ encodes the scattering amplitudes of the planar $\mathcal{N}=4$ super Yang-Mills theory. In this paper we study the structure of boundaries for the amplituhedron $\mathcal{A}_{n,k}{(2)}$. We classify all boundaries of all dimensions and provide their graphical enumeration. We find that the boundary poset for the amplituhedron is Eulerian and show that the Euler characteristic of the amplituhedron equals one. This provides an initial step towards proving that the amplituhedron for $m=2$ is homeomorphic to a closed ball.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.