Papers
Topics
Authors
Recent
2000 character limit reached

Supervised Learning of the Global Risk Network Activation from Media Event Reports

Published 1 Aug 2019 in cs.SI and physics.soc-ph | (1908.00164v2)

Abstract: The World Economic Forum (WEF) publishes annual reports on global risks which have the high impact on the world's economy. Currently, many researchers analyze the modeling and evolution of risks. However, few studies focus on validation of the global risk networks published by the WEF. In this paper, we first create a risk knowledge graph from the annotated risk events crawled from the Wikipedia. Then, we compare the relational dependencies of risks in the WEF and Wikipedia networks, and find that they share over 50% of their edges. Moreover, the edges unique to each network signify the different perspectives of the experts and the public on global risks. To reduce the cost of manual annotation of events triggering risk activation, we build an auto-detection tool which filters out over 80% media reported events unrelated to the global risks. In the process of filtering, our tool also continuously learns keywords relevant to global risks from the event sentences. Using locations of events extracted from the risk knowledge graph, we find characteristics of geographical distributions of the categories of global risks.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.