Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Global properties of the growth index of matter inhomogeneities in the universe (1908.00117v3)

Published 31 Jul 2019 in astro-ph.CO, gr-qc, and hep-th

Abstract: We perform here a global analysis of the growth index $\gamma$ behaviour from deep in the matter era till the far future. For a given cosmological model in GR or in modified gravity, the value of $\gamma(\Omega_{m})$ is unique when the decaying mode of scalar perturbations is negligible. However, $\gamma_{\infty}$, the value of $\gamma$ in the asymptotic future, is unique even in the presence of a nonnegligible decaying mode today. Moreover $\gamma$ becomes arbitrarily large deep in the matter era. Only in the limit of a vanishing decaying mode do we get a finite $\gamma$, from the past to the future in this case. We find further a condition for $\gamma(\Omega_{m})$ to be monotonically decreasing (or increasing). This condition can be violated inside general relativity (GR) for varying $w_{DE}$ though generically $\gamma(\Omega_{m})$ will be monotonically decreasing (like $\Lambda$CDM), except in the far future and past. A bump or a dip in $G_{\rm eff}$ can also lead to a significant and rapid change in the slope $\frac{d\gamma}{d\Omega_{m}}$. On a $\Lambda$CDM background, a $\gamma$ substantially lower (higher) than $0.55$ with a negative (positive) slope reflects the opposite evolution of $G_{\rm eff}$. In DGP models, $\gamma(\Omega_{m})$ is monotonically increasing except in the far future. While DGP gravity becomes weaker than GR in the future and $w{DGP}\to -1$, we still get $\gamma_{\infty}{DGP}= \gamma_{\infty}{\Lambda CDM}=\frac{2}{3}$. In contrast, despite $G{DGP}_{\rm eff}\to G$ in the past, $\gamma$ does not tend to its value in GR because $\frac{dG{DGP}_{\rm eff}}{d\Omega_{m}}\Big|_{-\infty}\ne 0$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube