Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the simultaneous $3$-divisibility of class numbers of triples of imaginary quadratic fields (1907.12097v2)

Published 28 Jul 2019 in math.NT

Abstract: Let $k \geq 1$ be a cube-free integer with $k \equiv 1 \pmod {9}$ and $\gcd(k, 7\cdot 571)=1$. In this paper, we prove the existence of infinitely many triples of imaginary quadratic fields $\mathbb{Q}(\sqrt{d})$, $\mathbb{Q}(\sqrt{d+1})$ and $\mathbb{Q}(\sqrt{d+k2})$ with $d \in \mathbb{Z}$ such that the class number of each of them is divisible by $3$. This affirmatively answers a weaker version of a conjecture of Iizuka \cite{iizuka-jnt}.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.