To Learn or Not to Learn: Analyzing the Role of Learning for Navigation in Virtual Environments (1907.11770v1)
Abstract: In this paper we compare learning-based methods and classical methods for navigation in virtual environments. We construct classical navigation agents and demonstrate that they outperform state-of-the-art learning-based agents on two standard benchmarks: MINOS and Stanford Large-Scale 3D Indoor Spaces. We perform detailed analysis to study the strengths and weaknesses of learned agents and classical agents, as well as how characteristics of the virtual environment impact navigation performance. Our results show that learned agents have inferior collision avoidance and memory management, but are superior in handling ambiguity and noise. These results can inform future design of navigation agents.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.