Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Variable Metric Forward-Backward Algorithm for Composite Minimization Problems (1907.11486v3)

Published 26 Jul 2019 in math.OC

Abstract: We present a forward-backward-based algorithm to minimize a sum of a differentiable function and a nonsmooth function, both being possibly nonconvex. The main contribution of this work is to consider the challenging case where the nonsmooth function corresponds to a sum of non-convex functions, resulting from composition between a strictly increasing, concave, differentiable function and a convex nonsmooth function. The proposed variable metric Composite Function Forward-Backward algorithm (C2FB) circumvents the explicit, and often challenging, computation of the proximity operator of the composite functions through a majorize-minimize approach. Precisely, each composite function is majorized using a linear approximation of the differentiable function, which allows one to apply the proximity step only to the sum of the nonsmooth functions. We prove the convergence of the algorithm iterates to a critical point of the objective function leveraging the Kurdyka-\L ojasiewicz inequality. The convergence is guaranteed even if the proximity operators are computed inexactly, considering relative errors. We show that the proposed approach is a generalization of reweighting methods, with convergence guarantees. In particular, applied to the log-sum function, our algorithm reduces to a generalized version of the celebrated reweighted $\ell_1$ method. Finally, we show through simulations on an image processing problem that the proposed C2FB algorithm necessitates less iterations to converge and leads to better critical points compared with traditional reweighting methods and classic forward-backward algorithms.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.