Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

A Pseudo-Marginal Metropolis-Hastings Algorithm for Estimating Generalized Linear Models in the Presence of Missing Data (1907.09090v1)

Published 22 Jul 2019 in stat.ME

Abstract: The missing data issue often complicates the task of estimating generalized linear models (GLMs). We describe why the pseudo-marginal Metropolis-Hastings algorithm, used in this setting, is an effective strategy for parameter estimation. This approach requires fewer assumptions, it provides joint inferences on the parameters in the likelihood, the covariate model, and the parameters of the missingness-mechanism, and there is no logical inconsistency of assuming that there are multiple posterior distributions. Moreover, this approach is asymptotically exact, just like most other Markov chain Monte Carlo techniques. We discuss computing strategies, conduct a simulation study demonstrating how standard errors change as a function of percent missingness, and we use our approach on a "real-world" data set to describe how a collection of variables influences the car crash outcomes.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.