Papers
Topics
Authors
Recent
Search
2000 character limit reached

The Unbearable Weight of Generating Artificial Errors for Grammatical Error Correction

Published 21 Jul 2019 in cs.CL | (1907.08889v1)

Abstract: In recent years, sequence-to-sequence models have been very effective for end-to-end grammatical error correction (GEC). As creating human-annotated parallel corpus for GEC is expensive and time-consuming, there has been work on artificial corpus generation with the aim of creating sentences that contain realistic grammatical errors from grammatically correct sentences. In this paper, we investigate the impact of using recent neural models for generating errors to help neural models to correct errors. We conduct a battery of experiments on the effect of data size, models, and comparison with a rule-based approach.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.