Papers
Topics
Authors
Recent
2000 character limit reached

Investigating Target Set Reduction for End-to-End Speech Recognition of Hindi-English Code-Switching Data

Published 15 Jul 2019 in eess.AS, cs.CL, and cs.SD | (1907.08293v1)

Abstract: End-to-end (E2E) systems are fast replacing the conventional systems in the domain of automatic speech recognition. As the target labels are learned directly from speech data, the E2E systems need a bigger corpus for effective training. In the context of code-switching task, the E2E systems face two challenges: (i) the expansion of the target set due to multiple languages involved, and (ii) the lack of availability of sufficiently large domain-specific corpus. Towards addressing those challenges, we propose an approach for reducing the number of target labels for reliable training of the E2E systems on limited data. The efficacy of the proposed approach has been demonstrated on two prominent architectures, namely CTC-based and attention-based E2E networks. The experimental validations are performed on a recently created Hindi-English code-switching corpus. For contrast purpose, the results for the full target set based E2E system and a hybrid DNN-HMM system are also reported.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.