Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

The structure and free resolutions of the symbolic powers of star configurations of hypersurfaces (1907.08172v3)

Published 18 Jul 2019 in math.AC and math.AG

Abstract: Star configurations of points are configurations with known (and conjectured) extremal behaviors among all configurations of points in $\mathbb P_kn$; additional interest come from their rich structure, which allows them to be studied using tools from algebraic geometry, combinatorics, commutative algebra and representation theory. In the present paper we investigate the more general problem of determining the structure of symbolic powers of a wide generalization of star configurations of points (introduced by Geramita, Harbourne, Migliore and Nagel) called star configurations of hypersurfaces in $\mathbb P_kn$. Here (1) we provide explicit minimal generating sets of the symbolic powers $I{(m)}$ of these ideals $I$, (2) we introduce a notion of $\delta$-c.i. quotients, which generalize ideals with linear quotients, and show that $I{(m)}$ have $\delta$-c.i. quotients, (3) we show that the shape of the Betti tables of these symbolic powers is determined by certain "Koszul" strands and we prove that a little bit more than the bottom half of the Betti table has a regular, almost hypnotic, pattern, and (4) we provide a closed formula for all the graded Betti numbers in these strands. As a special case of (2) we deduce that symbolic powers of ideals of star configurations of points have linear quotients. We also improve and extend results by Galetto, Geramita, Shin and Van Tuyl, and provide explicit new general formulas for the minimal number of generators and the symbolic defects of star configurations. Finally, inspired by Young tableaux, we introduce a technical tool which may be of independent interest: it is a "canonical" way of writing any monomial in any given set of polynomials. Our methods are characteristic--free.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube