Papers
Topics
Authors
Recent
2000 character limit reached

Probabilistic Regressor Chains with Monte Carlo Methods

Published 18 Jul 2019 in cs.LG and stat.ML | (1907.08087v1)

Abstract: A large number and diversity of techniques have been offered in the literature in recent years for solving multi-label classification tasks, including classifier chains where predictions are cascaded to other models as additional features. The idea of extending this chaining methodology to multi-output regression has already been suggested and trialed: regressor chains. However, this has so-far been limited to greedy inference and has provided relatively poor results compared to individual models, and of limited applicability. In this paper we identify and discuss the main limitations, including an analysis of different base models, loss functions, explainability, and other desiderata of real-world applications. To overcome the identified limitations we study and develop methods for regressor chains. In particular we present a sequential Monte Carlo scheme in the framework of a probabilistic regressor chain, and we show it can be effective, flexible and useful in several types of data. We place regressor chains in context in general terms of multi-output learning with continuous outputs, and in doing this shed additional light on classifier chains.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.