Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Multi-year Long-term Load Forecast for Area Distribution Feeders based on Selective Sequence Learning (1907.07836v3)

Published 18 Jul 2019 in eess.SY, cs.LG, and cs.SY

Abstract: Long-term load forecast (LTLF) for area distribution feeders is one of the most critical tasks frequently performed in electric distribution utility companies. For a specific planning area, cost-effective system upgrades can only be planned out based on accurate feeder LTLF results. In our previous research, we established a unique sequence prediction method which has the tremendous advantage of combining area top-down, feeder bottom-up and multi-year historical data all together for forecast and achieved a superior performance over various traditional methods by real-world tests. However, the previous method only focused on the forecast of the next one-year. In our current work, we significantly improved this method: the forecast can now be extended to a multi-year forecast window in the future; unsupervised learning techniques are used to group feeders by their load composition features to improve accuracy; we also propose a novel selective sequence learning mechanism which uses Gated Recurrent Unit network to not only learn how to predict sequence values but also learn to select the best-performing sequential configuration for each individual feeder. The proposed method was tested on an actual urban distribution system in West Canada. It was compared with traditional methods and our previous sequence prediction method. It demonstrates the best forecasting performance as well as the possibility of using sequence prediction models for multi-year component-level load forecast.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.