Weakly regular Sturm-Liouville problems: a corrected spectral matrix method
Abstract: In this paper, we consider weakly regular Sturm-Liouville eigenproblems with unbounded potential at both endpoints of the domain. We propose a Galerkin spectral matrix method for its solution and we study the error in the eigenvalue approximations it provides. The result of the convergence analysis is then used to derive a low-cost and very effective formula for the computation of corrected numerical eigenvalues. Finally, we present and discuss the results of several numerical experiments which confirm the validity of the approach.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.