Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Quantum-inspired Algorithm for General Minimum Conical Hull Problems (1907.06814v1)

Published 16 Jul 2019 in cs.LG, cs.CG, cs.DS, quant-ph, and stat.ML

Abstract: A wide range of fundamental machine learning tasks that are addressed by the maximum a posteriori estimation can be reduced to a general minimum conical hull problem. The best-known solution to tackle general minimum conical hull problems is the divide-and-conquer anchoring learning scheme (DCA), whose runtime complexity is polynomial in size. However, big data is pushing these polynomial algorithms to their performance limits. In this paper, we propose a sublinear classical algorithm to tackle general minimum conical hull problems when the input has stored in a sample-based low-overhead data structure. The algorithm's runtime complexity is polynomial in the rank and polylogarithmic in size. The proposed algorithm achieves the exponential speedup over DCA and, therefore, provides advantages for high dimensional problems.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.