Papers
Topics
Authors
Recent
2000 character limit reached

Divide-and-Conquer Learning by Anchoring a Conical Hull

Published 22 Jun 2014 in stat.ML and cs.LG | (1406.5752v1)

Abstract: We reduce a broad class of machine learning problems, usually addressed by EM or sampling, to the problem of finding the $k$ extremal rays spanning the conical hull of a data point set. These $k$ "anchors" lead to a global solution and a more interpretable model that can even outperform EM and sampling on generalization error. To find the $k$ anchors, we propose a novel divide-and-conquer learning scheme "DCA" that distributes the problem to $\mathcal O(k\log k)$ same-type sub-problems on different low-D random hyperplanes, each can be solved by any solver. For the 2D sub-problem, we present a non-iterative solver that only needs to compute an array of cosine values and its max/min entries. DCA also provides a faster subroutine for other methods to check whether a point is covered in a conical hull, which improves algorithm design in multiple dimensions and brings significant speedup to learning. We apply our method to GMM, HMM, LDA, NMF and subspace clustering, then show its competitive performance and scalability over other methods on rich datasets.

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.