Papers
Topics
Authors
Recent
2000 character limit reached

Cataloging Accreted Stars within Gaia DR2 using Deep Learning (1907.06652v2)

Published 15 Jul 2019 in astro-ph.GA, hep-ph, and stat.ML

Abstract: The goal of this study is to present the development of a machine learning based approach that utilizes phase space alone to separate the Gaia DR2 stars into two categories: those accreted onto the Milky Way from those that are in situ. Traditional selection methods that have been used to identify accreted stars typically rely on full 3D velocity, metallicity information, or both, which significantly reduces the number of classifiable stars. The approach advocated here is applicable to a much larger portion of Gaia DR2. A method known as "transfer learning" is shown to be effective through extensive testing on a set of mock Gaia catalogs that are based on the FIRE cosmological zoom-in hydrodynamic simulations of Milky Way-mass galaxies. The machine is first trained on simulated data using only 5D kinematics as inputs and is then further trained on a cross-matched Gaia/RAVE data set, which improves sensitivity to properties of the real Milky Way. The result is a catalog that identifies around 767,000 accreted stars within Gaia DR2. This catalog can yield empirical insights into the merger history of the Milky Way and could be used to infer properties of the dark matter distribution.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.