Papers
Topics
Authors
Recent
Search
2000 character limit reached

General Board Game Playing for Education and Research in Generic AI Game Learning

Published 11 Jul 2019 in cs.AI, cs.LG, and stat.ML | (1907.06508v1)

Abstract: We present a new general board game (GBG) playing and learning framework. GBG defines the common interfaces for board games, game states and their AI agents. It allows one to run competitions of different agents on different games. It standardizes those parts of board game playing and learning that otherwise would be tedious and repetitive parts in coding. GBG is suitable for arbitrary 1-, 2-, ..., N-player board games. It makes a generic TD($\lambda$)-n-tuple agent for the first time available to arbitrary games. On various games, TD($\lambda$)-n-tuple is found to be superior to other generic agents like MCTS. GBG aims at the educational perspective, where it helps students to start faster in the area of game learning. GBG aims as well at the research perspective by collecting a growing set of games and AI agents to assess their strengths and generalization capabilities in meaningful competitions. Initial successful educational and research results are reported.

Citations (25)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.