Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Dual Memory Structure for Efficient Use of Replay Memory in Deep Reinforcement Learning

Published 15 Jul 2019 in cs.LG and stat.ML | (1907.06396v1)

Abstract: In this paper, we propose a dual memory structure for reinforcement learning algorithms with replay memory. The dual memory consists of a main memory that stores various data and a cache memory that manages the data and trains the reinforcement learning agent efficiently. Experimental results show that the dual memory structure achieves higher training and test scores than the conventional single memory structure in three selected environments of OpenAI Gym. This implies that the dual memory structure enables better and more efficient training than the single memory structure.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.